Crystallization and preliminary X-ray diffraction analysis of the high molecular weight ketoacyl reductase FabG4 complexed with NADH. Corrigendum

نویسندگان

  • Debajyoti Dutta
  • Sudipta Bhattacharyya
  • Amit Kumar Das
چکیده

FabG4 from Mycobacterium tuberculosis belongs to the high molecular weight ketoacyl reductases (HMwFabGs). The enzyme requires NADH for β-ketoacyl reductase activity. The protein was overexpressed, purified to homogeneity and crystallized as a FabG4-NADH complex. A mountable FabG4:NADH complex crystal diffracted to 2.59 Å resolution and belonged to space group P1, with unit-cell parameters a = 63.07, b = 71.03, c = 92.92 Å, α = 105.02, β = 97.06, γ = 93.66°. The Matthews coefficient suggested the presence of four monomers in the unit cell. In addition, a self-rotation function revealed the presence of two twofold NCS axes and one fourfold NCS axis. At χ = 180° the highest peak corresponds to the twofold NCS between two monomers, whereas the second peak corresponds to the twofold NCS between two dimers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structure of hexanoyl-CoA bound to β-ketoacyl reductase FabG4 of Mycobacterium tuberculosis.

FabGs, or β-oxoacyl reductases, are involved in fatty acid synthesis. The reaction entails NADPH/NADH-mediated conversion of β-oxoacyl-ACP (acyl-carrier protein) into β-hydroxyacyl-ACP. HMwFabGs (high-molecular-weight FabG) form a phylogenetically separate group of FabG enzymes. FabG4, an HMwFabG from Mycobacterium tuberculosis, contains two distinct domains, an N-terminal 'flavodoxintype' doma...

متن کامل

Design, synthesis and characterization of novel inhibitors against mycobacterial β-ketoacyl CoA reductase FabG4.

We report the design and synthesis of triazole-polyphenol hybrid compounds 1 and 2 as inhibitors of the FabG4 (Rv0242c) enzyme of Mycobacterium tuberculosis for the first time. A major advance in this field occurred only a couple of years ago with the X-ray crystal structure of FabG4, which has helped us to design these inhibitors by the computational fragment-based drug design (FBDD) approach....

متن کامل

Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DapA (Rv2753c) from Mycobacterium tuberculosis. Corrigendum

Dihydrodipicolinate synthase from Mycobacterium tuberculosis (DHDPS, DapA, Rv2753c) has been cloned, heterologously expressed in Escherichia coli, purified using standard chromatographic techniques and crystallized in a monoclinic crystal form. Preliminary diffraction data analysis suggests the presence of two independent tetramers in the asymmetric unit in almost the same relative orientation.

متن کامل

Crystallization and preliminary X-ray diffraction analysis of FabG from Yersinia pestis.

The type II fatty-acid biosynthesis pathway of bacteria provides enormous potential for antibacterial drug development owing to the structural differences between this and the type I fatty-acid biosynthesis system found in mammals. β-Ketoacyl-ACP reductase (FabG) is responsible for the reduction of the β-ketoacyl group linked to acyl carrier protein (ACP), and is essential for the formation of ...

متن کامل

Crystallization and preliminary X-ray diffraction studies of a surface mutant of the middle domain of PB2 from human influenza A (H1N1) virus.

In the last hundred years, four influenza pandemics have been experienced, beginning with that in Spain in 1918. Influenza A virus causes severe pneumonia and its RNA polymerase is an important target for drug design. The influenza A (H1N1) virus has eight ribonucleoprotein complexes, which are composed of viral RNA, RNA polymerases and nucleoproteins. PB2 forms part of the RNA polymerase compl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2012